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NOMENCLATURE 

inside radius of pipe; half distance be- 
tween parallel plates ; 
function defined by equation (37); 
outside radius of pipe, thickness of plate ; 
function defined by equation (38); 
function defined by equation (39) ; 
function defined by equation (40) ; 
function defined by equation (16); 
surface heat-transfer coefficient at inter- 
face ; 
an integer index ; 
Bessel function of first kind; 
thermal conductivity, also an integer 
index ; 
functions defined by equations (25) and 

(26) ; 
operators defined by equation (1); 
integer indices ; 
function defined by equation (33); see 
also equation (47) ; 
function defined by equation (34), see 
also equation (47) ; 
radial coordinate ; 
functions dellned by equations (20) and 
(21); see also equations (43) and (45); 
functions defined by equations (20) and 
(22); see also equations (44) and (46); 
time ; 
temperature in pipe wall; 
auxiliary functions ; 
fluid velocity ; 
axial coordinate; 
transverse coordinates ; 
Bessel function of second kind. 

Greek symbols 

Yn, 

% 

e(r, x, 0, 

:: 
44% 0. 
$(x9 th. 

% 
V2, 

thermal (plus eddy) diffusivity ; 
a dummy variable ; 
number dellned by equation (17); see 
also equation (48) ; 
number defined by equation (19); see 
also equation (48); 
a dummy variable; 
temperature in fluid ; 
a dummy variable ; 
a dummy variable ; 
temperature of fluid at interface ; 
temperature of pipe wall at interface ; 
number defined by equation (18) ; 
L-aplace operator. 

PROBLEM FORMULATION 

C~NSID~ a uniform semi-infinite (x 2 0) cylindrical pipe 
of inside radius r = a and outside radius r = 6, perfectly 
insulated on its outside surface and containing a homogen- 
eous fluid which moves with constant uniform velocity V 
(“plug” flow) in the positive xdirection. Initially the 
temperature &,x, t) of the fluid and the temperature 
T(r, x, t) of the pipe are both zero. Suddenly the tempera- 
tures of the end of the pipe (x = 0) and of the fluid entering 
the pipe at x = 0 are increased by a unit amount. It is 
desired to determine 8 and T for x z 0, t > 0, where t 
denotes time. 

The analysis which follows includes the effects of thermal 
capacity and diffusivity in each medium. Axial symmetry is 
postulated. A constant uniform interface. surface heat- 
transfer cocfftcient h is accounted for. However, radiative 
heat transfer and internal heat generation are not considered. 
In what follows, subscript 1 refers to fluid and subscript 2 
refers to pipe.. Thermal conductivity is denoted by k and 
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1326 SHORTER COMMUNICATIONS 

diffusivity by a. Eddy diffusivity as well as molecular An implicit condition is that u1 and u2 remain finite fo1 
diffusivity is included in a,. r = 0. 

We define the two operators. The solutions for the functions ui (i = 1, , 4) may be 

L,( ) = a,V2( ) - vi - i; L,( ) = a,V’( ) - i (la, b) 

represented in terms of certain useful expressions defined 

as follows 

where 

V2( )=$+ff+f 

and also define the two interface temperatures 

4(x, t) = e(a, x, t); $(x, t) = T(a, x, r). 

Thus we are concerned with the system 

L,(0) = 0, L,(T) = 0 for x > 0, t > 0 

Hr. y ;k,j) = Jdyr)yJyb) - Uyr)Jj(yb) (16) 

(where J and Y denote Bessel functions) 

(*) & = nth positive root (in ascending order) of Jo@) = 0 (17) 

0.’ = 8.2 + (V/2aJZ (18) 

(3a, b) 
y. = nth positive root (in ascending order) of 

E(a,y;O,l) = 0 (19) 

(4a, b) 
&(r,n) = %(r,n) = (lIB.a)CJo(B.r)/J,(B.n)l (20) 

subject to the initial conditions 

t9=O,T=OforxzO,t=O (5a, b) 

W,n) = 
(aly,)E(a,r.;l,l)~(r,~~;O,l) 

(21) 
a2E2(a,y,;0,0) - b’E’(b,y,;O, 1) 

and the boundary conditions 

dT 1 
ar = 0 for x 2 0, t 2 0 

r=b 

tV=l,T=lforx=O,t>O 

S,@, n) = _ _ ..-- ~-~--~ - 

(6) 
Ha, y. ; 4 0) + (a/b) E(a, Y.; Ll) 

X,(x,t,n) = eyxi2~fl 

U’a, b) 

(22) 

= h(4 - JI) for x 2 0, t 2 0. + emmx erfc (” l:z~“)] (23) 

@a, b) 

In all these equations where r is variable, 0 s r 5 a for 

X,(x,t,n) = eCYnx erfc r*) 

e(r, x, t) and a 5 r 5 b for T(r, x, t). 

In what follows we formulate this problem which involves 
+ eYnz erfc (s) (24) 

two unknown functions (0, T) each depending on three 

independent variables (r, x, t) as a single integral equation 

(36) involving only one unknown function (4) which is a 
K,(x, &t,q,n) = J(a&) fi.’ ey(x-e)izU~ e-*‘lcuA 

function of only two independent variables (x, t). x lexp [ - b - 5Y/%rll - exp C - (x + 5)2/%rllI (25) 

PRELIMINARY SOLUTIONS K,(x, 5. t, V, n) = &/~a) 7. 

Space available in this note permits only a brief outline 

Z e-*a”i(exp [5$] 

of the analysis leading to the integral equation (36). We write - exp [y],/. (26) 

8=u,+uz;T=u,+u, Pa, b) 

where the unknown functions u,, (i = 1, ,4) satisfy In terms of these. quantities, we may write the solutions as 

follows : 
L,(uJ = L,(u,) = L,(u,) = L2(uq) = 0 for x 2 0, t > 0 

(10) 

u,=u,=u,=u,=OforxLO,t=O (11) 
Udr.x,t) = f R,(r,n)X,(x,t,n) 

n=1 
(27) 

~]~=~=~]~=~=Oforx~O,t~O (12) u2(r,X,t)= _ 
C S,(r,n)T i ~(t;,t-~)K,(x,5,t,tl,n)d?d5 (28) 

u,=u,=l,u,=u,=Oforx=O,t>O (13) n= I Li b 

~,(a, x, t) = 44x, t). u.4, x, t) = Kc, t) (14) 
u&,x, t) = 2 RAr, n)X, (x, t, n) (29) 

ul(a, x, t) = ~+(a, x, t) = 0 for x > 0, t h 0. (1% “:: 1 
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u,(r,x,t) = i S,(r,n) 9 i9(C,t_tl)K,(x,5,t,11,n)dqdr.(30) 
“=I ;, ‘0 

Note that conditions (15) have resulted in the appearance 
of the functions d and $ in the solutions for ur and uq, 
respectively. The solutions for a1 and us are fairly trivial; 
those for ur and uq, which appear to be quite useful in them- 
selves, involve adapting and applying a procedure due to 
Lowan [l, 21. Those interested in following the details of the 
derivations of the solutions a, (i = 1, , 4), may refer to a 
thesis [4] by one of the authors, noting some changes in 
notation from that given above. This thesis [4] also includes 
several other developments relating to conjugated heat 
transfer in fluid flowing through insulated pipes and 
conduits. 

DERIVATION OF THE INTEGRAL EQUATION 

Equations (9) give the body temperatures tJ and Tin terms 
of the functions ur which in turn are given by equations 
(27H30) in terms of the unknown surface temperatures d 
and JI. We also have 

ae 1 - -1 =-- ar li 

c CX,(X~ t, 4 
a n=, 

7-t 

1s +(t. t - rl)K,(x, 5, t, 1. n) dq d5] (31) 

00 

aT -1 = ! t [P(n)XAx,t, n) ar ,=a a n=l 

ml 

+ Q(n) 55 ti(t t - n) K,(x, r, t, rt. n) dn drl (32) 

00 

where 
P(n) = (CbE(b,~,;O,l)/aE(a,~,;41)1 - I)-’ (33) 

Q(n) = [bE(a, ~.;40YaE(a, Y”; 1,1) + 11-l (34) 

and are now in a position to obtain the integral equation. 
From @a) we have 

and combining this with (31), we have $ entirely in terms of 
4. Employing this expression in (32) and also in (8b), we 
obtain the desired result which may be written as 

A(x,r) + ~ jB(x,~,t,s)~(S,t-tt)dttdt;=(klkdha)[C(x,t) 
00 

+ j~j-bcx,t,,,~.8)~~.t - tl -B)WdAdrll (36) 
00 0 

where 

m 

4(x, t) = c [k,X,(x, r, n) + k,P(n)X,(x, r, n)] (37) 
“=I 

B(x,&srl)= c Ck,K,(x,S,t,~t,n)+k,Q(n)K,(x,r,t,~,n)l(38) 
“=I 

-a’, cc 

C(x,t)=j{ [ c x,(Lt -%@I 
00 Ill=, 

m 

(39) 

D(x, t, rl. 5 8) = y [ c &(5,1, r - tt, B, m)] 
0 nt=1 

m 

x [ 1 Q(n)Kdx, 5. t. v, 41 dt. 
“=I 

WY 

It is likely that some of the integrations and summations 
involved in definitions (37)-(40) can be carried out in fmite 
form but we have not been successful in doing so. It is also 
clear that the integral equation (361 which is the goal and 
end result of this note, is greatly simplified in case h + co. 

THE CASE OF SLAR GEOMETRY 

A similar and somewhat simpler case is that in which a 
uniform and homogeneous fluid is flowing with constant 
uniform velocity V in the positive xdirection, confined 
between two semi-infinite (x 2 0) plates, each parallel to 
the TX plane, each of thickness b, each insulated on the out- 
side (unwetted) surface, and located at a distance 2a from 
each other measured in the ydirection. Initially all tempera- 
tures are zero. Suddenly the ends (x = 0) of the plates and 
the fluid entering between the plates at x = 0 experience a 
unit increase in temperature. We take advantage of the 
symmetry about the mid-fluid-plane and-seek 0(y,, x, tX the 
temperature of the fluid, and T&, x, t), the temperature of 
the plate, for x 2 0, t > 0, 0 2 y, 2 a, 0 1 y, 2 b, subject 
to conditions: 6 = T = 0 for t = 0; &J/ay, = 0 for y, = a; 
aT/dy,=Ofory,=b;t9=T=lforx=O,t>O;and 

k,E 
1 

= h(c$ - +) = - k, g 1 (41) 
YL=o 2 y2=0 

The last condition includes the influence of a uniform 
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constant surface heat-transfer coefficient h at the interface 
y, = y2 = 0, and the negative sign results from the fact that 
y1 and y2 are taken as positive in opposite directions. 
Equations (la, b) are also applicable with an obvious 
modification in the definition of the operator V’(). Defining 

4(x, t) = e(0, x, t); $(x. t) = T(0. x, t) (42) 

the development is almost identically parallel to that given 
above for the cylindrical geometry. With the evident replace- 
ment of r by Y, or Y,, as the case may be, equations (9), (27t 
(30), (36x40) continue to be valid, but some modifications 
are called for in the definitions of various other functions. 
We have 

&(Y. n) = (l/G) sin (L&Y) 

S,(Y, n) = ( - l)“(I/B.a) cos [&(a - Y)l 

&(Y, n) = (I/Y,@ sin (Y,Y) 

&(Y> n) = ( - l)“(lly&) cos [r.(b - Y)I 

P(n) = Q(n) = 1 

where 

8. = (n - &n/a); Yn = (n - !r)(n/b). 

Definitions (18), (23x26) continue to be valid. 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

REMAlU@ ABOUT EQUATION (36) 

Equations (36X with the accompanying definitions of 
functions appearing therein, is the object of this note. The 
fluid interface temperature +(x, t) is the unknown function 
to be determined; all other results may be obtained in a 
straightforward way once 4 is known. (It is obvious that a 

similar formulation may be made in terms of $, the tempera- 
ture of the pipe at the interface, rather than in terms of 0, 
and also, for the case h + co, not only does (36) simplify 
greatly, the right hand side vanishing in this case, but also 
$ = 4.) We have not yet seriously undertaken the solution 
of (36) but venture to make the following observations for 
whatever use they may be. If one considers the contours, 
4 = constant, above an xt plane, it it clear that the contour 
4 = 1 lies along the positive t-axis while the contour 4 = 0 
lies along the positive x-axis. In general of course, we may 
expect that other contours will be curved. However, we may 
reasonably conjecture that the most interesting features of 
the solution, namely the “effective speed” with which the 
temperature “front” propagates (cf. Munk [3]), and the 
rate at which this originally abrupt front “softens” as it 
moves down the conduit, would not be significantly altered 
if the contours 4 = constant were assumed to be straight 
lines passing through the origin on the xt plane. With this 
assumption 4(x, t) would be reduced to a function of a single 
variable, namely arctan (x/t), and one could seek to satisfy 
equation (36) by any of a number of approximate methods. 
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